我们根据光学通信中的载体回收率的变异推断研究了自适应盲人均衡器的潜力。这些均衡器基于最大似然通道估计的低复杂性近似。我们将变异自动编码器(VAE)均衡器的概念概括为包括概率星座塑形(PCS)的高阶调制格式,无处不在,在光学通信中,对接收器进行过度采样和双极化传输。除了基于卷积神经网络的黑盒均衡器外,我们还提出了基于线性蝴蝶滤波器的基于模型的均衡器,并使用变异推理范式训练过滤器系数。作为副产品,VAE还提供了可靠的通道估计。我们在具有符号间干扰(ISI)的经典添加剂白色高斯噪声(AWGN)通道和色散线性光学双极化通道上分析了VAE的性能和灵活性。我们表明,对于固定的固定通道但也随时间变化的通道,它可以超越最先进的恒定算法(CMA)来扩展盲人自适应均衡器的应用范围。评估伴随着超参数分析。
translated by 谷歌翻译
Vocal Bursts -- short, non-speech vocalizations that convey emotions, such as laughter, cries, sighs, moans, and groans -- are an often-overlooked aspect of speech emotion recognition, but an important aspect of human vocal communication. One barrier to study of these interesting vocalizations is a lack of large datasets. I am pleased to introduce the EmoGator dataset, which consists of 32,040 samples from 365 speakers, 16.91 hours of audio; each sample classified into one of 30 distinct emotion categories by the speaker. Several different approaches to construct classifiers to identify emotion categories will be discussed, and directions for future research will be suggested. Data set is available for download from https://github.com/fredbuhl/EmoGator.
translated by 谷歌翻译
Quantum Machine Learning (QML) shows how it maintains certain significant advantages over machine learning methods. It now shows that hybrid quantum methods have great scope for deployment and optimisation, and hold promise for future industries. As a weakness, quantum computing does not have enough qubits to justify its potential. This topic of study gives us encouraging results in the improvement of quantum coding, being the data preprocessing an important point in this research we employ two dimensionality reduction techniques LDA and PCA applying them in a hybrid way Quantum Support Vector Classifier (QSVC) and Variational Quantum Classifier (VQC) in the classification of Diabetes.
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
Graph neural networks (GNNs) have recently emerged as a promising learning paradigm in learning graph-structured data and have demonstrated wide success across various domains such as recommendation systems, social networks, and electronic design automation (EDA). Like other deep learning (DL) methods, GNNs are being deployed in sophisticated modern hardware systems, as well as dedicated accelerators. However, despite the popularity of GNNs and the recent efforts of bringing GNNs to hardware, the fault tolerance and resilience of GNNs has generally been overlooked. Inspired by the inherent algorithmic resilience of DL methods, this paper conducts, for the first time, a large-scale and empirical study of GNN resilience, aiming to understand the relationship between hardware faults and GNN accuracy. By developing a customized fault injection tool on top of PyTorch, we perform extensive fault injection experiments to various GNN models and application datasets. We observe that the error resilience of GNN models varies by orders of magnitude with respect to different models and application datasets. Further, we explore a low-cost error mitigation mechanism for GNN to enhance its resilience. This GNN resilience study aims to open up new directions and opportunities for future GNN accelerator design and architectural optimization.
translated by 谷歌翻译
Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.
translated by 谷歌翻译
Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.
translated by 谷歌翻译
Chromosome analysis is essential for diagnosing genetic disorders. For hematologic malignancies, identification of somatic clonal aberrations by karyotype analysis remains the standard of care. However, karyotyping is costly and time-consuming because of the largely manual process and the expertise required in identifying and annotating aberrations. Efforts to automate karyotype analysis to date fell short in aberration detection. Using a training set of ~10k patient specimens and ~50k karyograms from over 5 years from the Fred Hutchinson Cancer Center, we created a labeled set of images representing individual chromosomes. These individual chromosomes were used to train and assess deep learning models for classifying the 24 human chromosomes and identifying chromosomal aberrations. The top-accuracy models utilized the recently introduced Topological Vision Transformers (TopViTs) with 2-level-block-Toeplitz masking, to incorporate structural inductive bias. TopViT outperformed CNN (Inception) models with >99.3% accuracy for chromosome identification, and exhibited accuracies >99% for aberration detection in most aberrations. Notably, we were able to show high-quality performance even in "few shot" learning scenarios. Incorporating the definition of clonality substantially improved both precision and recall (sensitivity). When applied to "zero shot" scenarios, the model captured aberrations without training, with perfect precision at >50% recall. Together these results show that modern deep learning models can approach expert-level performance for chromosome aberration detection. To our knowledge, this is the first study demonstrating the downstream effectiveness of TopViTs. These results open up exciting opportunities for not only expediting patient results but providing a scalable technology for early screening of low-abundance chromosomal lesions.
translated by 谷歌翻译
生成模型生成的合成数据可以增强医学成像中渴望数据深度学习模型的性能和能力。但是,(1)(合成)数据集的可用性有限,并且(2)生成模型训练很复杂,这阻碍了它们在研究和临床应用中的采用。为了减少此入口障碍,我们提出了Medigan,Medigan是一站式商店,用于验证的生成型号,该型号是开源框架 - 不合骨python图书馆。 Medigan允许研究人员和开发人员仅在几行代码中创建,增加和域名。在基于收集的最终用户需求的设计决策的指导下,我们基于生成模型的模块化组件(i)执行,(ii)可视化,(iii)搜索和排名以及(iv)贡献。图书馆的可伸缩性和设计是通过其越来越多的综合且易于使用的验证生成模型来证明的,该模型由21种模型组成,利用9种不同的生成对抗网络体系结构在4个域中在11个数据集中训练,即乳腺摄影,内窥镜检查,X射线和X射线和X射线镜头,X射线和X型。 MRI。此外,在这项工作中分析了Medigan的3个应用,其中包括(a)启用社区范围内的限制数据共享,(b)研究生成模型评估指标以及(c)改进临床下游任务。在(b)中,扩展了公共医学图像综合评估和报告标准,我们根据图像归一化和特定于放射学特征提取了Fr \'Echet Inception距离变异性。
translated by 谷歌翻译
蒙特卡洛树搜索(MCTS)是一种搜索最佳决策的最佳先入点方法。 MCT的成功在很大程度上取决于树木的建造方式,并且选择过程在其中起着基本作用。被证明是可靠的一种特殊选择机制是基于树木(UCT)的上限置信度范围。 UCT试图通过考虑存储在MCT的统计树中的值来平衡探索和剥削。但是,对MCTS UCT的一些调整对于这是必要的。在这项工作中,我们使用进化算法(EAS)以替代UCT公式并在MCT中使用进化的表达式来进化数学表达式。更具体地说,我们通过在MCTS方法(SIEA-MCT)中提出的语义启发的进化算法来发展表达式。这是受遗传编程(GP)语义的启发,其中使用健身案例被视为在GP中采用的要求。健身病例通常用于确定个体的适应性,可用于计算个体的语义相似性(或差异)。但是,MCT中没有健身案例。我们通过使用MCT的多个奖励值来扩展此概念,从而使我们能够确定个人及其语义的适应性。通过这样做,我们展示了SIEA-MCT如何能够成功地发展数学表达式,而数学表达式与UCT相比,无需调整这些演变的表达式而产生更好或竞争的结果。我们比较了提出的SIEA-MCT与MCTS算法,MCTS快速动作值估计算法的性能, *-minimax家族的三种变体,一个随机控制器和另外两种EA方法。我们始终展示SIEA-MCT在挑战性的Carcassonne游戏中如何优于大多数这些智能控制者。
translated by 谷歌翻译